Wowed by a new paper I just read and wish I had thought to write myself. Lukas Berglund and others, led by Owain Evans, asked a simple, powerful, elegant question: can LLMs trained on A is B infer automatically that B is A? The shocking (yet, in historical context, see below, unsurprising) answer is no:
Once you learn how LLMs work (plenty links explaining it), it gets fairly obvious why LLMs fail the reversal: even if they can get some simple logic through the tokens alone, the opposition between “parent” and “child” is semantic, but LLMs do not handle semantics, they only handle the tokens themselves.
The part that interest me the most on this is this footnote:
I’m often babbling about LLMs handling tokens instead of concepts, and how you need to handle concepts to actually model language, but it seems that at least Microsoft is working its way into that. I wouldn’t be surprised if OpenAI, Alphabet/Google and Meta/Faecesbook weren’t doing the same to “fix” ChatGPT, Bard and LLaMa.
Eventually I think that some better model will pop up, where this “neurosymbolism” (I like to call it a “conceptual” layer - basically semantics with a sprinkle of pragmatics) is the core of the model, with token handling mostly to interface with the user. If they get this right it’ll be rather obvious early on, because: